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Good morning.

I’m Nick Radcliffe, and this morning my mission is to persuade you that 
if you analyse data, you should be doing test-driven data analysis, which is 
the title of my talk . . .
. . . though I have some alternative titles as well.

I’ve been feeling my way towards what I now call test-driven data analysis 
for about fifteen years, and, with your indulgence, I’m going to start by 
explaining the journey that brought me to TDDA, before describing 
what it is and why I think you should adopt it.

As a teenager, I spent most of my time writing code—mostly machine 
code—first for the Zilog Z80, and later for the 6502. I spent my school 
holidays writing database and word processing software for the BBC 
Micros used by kids at Hertfordshire schools.

And I was good at it. My code was used by tens of thousands of school 
kids, it ran over a thousand times faster than the code it replaced, while 
using the same manual and producing identical results, and remarkably 
few bugs were ever reported against it. In truth, I thought I was pretty 
hot shit.

I went to university and did a Ph.D. in genetic algorithms and deep 
learning (as we didn’t call it) and fell into data analysis. I formed a 
company, Quadstone, stopped coding, and spent 15 years as the CTO, 
managing software development and data analysis consulting services.

Around the year 2000, we started trying to solve a new kind of modelling 
problem—-something we called uplift modelling—-and I found myself 
writing increasingly detailed pseudocode, which—naturally—led to my 
starting to write Python.

At this point that I made a frightening discovery:

Writing code is not like riding a bike
Writing code is
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riding a bike



To my horror, I would write a page of code, run it, and it would turn out 
to have a dozen syntax errors and, more worryingly, half a dozen logic 
errors. I had become terrible at writing code.

Around this time, I had been reading Tim Bray’s blog—-Ongoing—-and 
he had been proselytising on behalf of something called test-driven 
development, which as I understood it, was all about writing so many and 
such detailed tests that there was nowhere for bugs to hide, and to run 
these tests all the time, especially when you change code. So this is what 
I started doing and continue doing today: I test the bejesus out of my 
code to create a really inhospitable environment for bugs.

However, because all I did was read a couple of blog posts by Tim Bray, 
and because I was doing a mixture of writing a data analysis tool, and 
using it to perform actual data analysis, my form of test-driven 
development was, and is, a little different from orthodox TDD.

So my understanding of the orthodox TDD process is something like 
this:

• Write some tests (mostly unit tests), possibly mocking everything 
within an inch of its life.

• Write the code to make the tests pass.
• Stop when then tests pass (and maybe refactor)

Whereas what I did (and do) is much more like:

• Write some code to generate some kind of results.
• Don’t mock anything, ever
• Spend a long time carefully checking the results. (A good mindset 

for this is to imagine that you’re Jeremy Paxman and that the 
numbers you’re being asked to believe are being provided by a 
particularly oleaginous politician.)

• Once I really believe that the generated results are correct, write 
tests that assert that the reference inputs produce the expected 
“reference” results. We tend to call larger examples of this reference 
tests.

• Note particularly, that I nearly always write the tests after writing 
the code. Not long after: usually before committing any code. But 
after, not before.

And on this last point, I’ve never really felt as if I have much choice. 
Even for quite small inputs, generating the results I want to test against 
by hand is typically hard enough that the only way I could do it is to 
write some more code. And while that isn’t necessarily crazy, life is too 
short.

So that’s the story of how I came to test-driven development, and to 
writing tests for analytical software.

Don’t mock:
it’s not kind

Why is this
lying bastard
lying to me?



Data Analysis 

But what about actually doing analysis?

Doing analysis tends not to  look anything like the somewhat-scientific 
approach of test-driven development. It just doesn’t.

Doing data analysis invariably starts with scrabbling around trying and 
find some vaguely relevant data with a view to answering some question 
or performing some modelling that itself is not usually very well defined. 
You get some some messy collection of datasets, almost always without 
accurate data dictionaries, with poorly defined relationships between 
them, collected on various inconsistent bases, and usually either zero or 
half a dozen “unique identifiers” that might or might not act as reliable 
keys for joining the data to form a coherent whole. And as we try to 
understand the data and patterns within it, we’ll find oddities, and start 
to question our own sanity, and realise that some of the values are in 
metric units and some in imperial units, and some of the values aren’t 
real but have been inferred, and that some data is duplicated, while other 
is missing entirely. And slowly, if we’re diligent and lucky, we’ll slowly 
start to piece together an understanding of the data and the domain that 
don’t seem inherently inconsistent, and we’ll keep re-sourcing bits of 
data and asking questions until eventually we can try some kind of 
analytical approach to whatever problem we are trying to solve. And it 
just goes round and round and round until either we actually get to a 
result we believe; or maybe we just run out of time or energy and simply 
decide whether to go with what we’ve got or give the whole thing up.

Test-Driven Data Analysis 

Now a few years ago, my good friend Patrick Surry said to me:

“We do test-driven developmnet.
So shouldn’t we do test-driven data analysis?”

And we both immediately loved the idea. The only problem was, we had 
very little idea what it could mean. Obviously, today, we would channel 
our inner Teresa May and assert that “test-driven data analysis means test-
driven data analysis”, but at the time we felt we needed to move beyond 
tautologies.

Intuitively, we wanted to take the ideas from TDD in software 
development and apply them to the process of data analysis, making 
appropriate adjustments. But what does that actually mean?

Well, for me, the starting point is all about correctness. We do data 
analysis to understand things, to support better decision making, to 
optimise things. And it’s often OK if our results aren’t perfect—which is 
just as well—but there really isn’t any point if we’re not going to at least 
get the sign and sense of the analysis right. And, unfortunately, Sturgeon’s 
Revelation (that’s, of course, Theodore, not Nicola Sturgeon), that

“ninety per cent of everything is crap”

Shouldn’t we do
test-driven

data analysis?

Transfer the ideas of
test-driven development

from software development
to data analysis

(mutatis mutandis*)

STURGEON’S REVELATON 

“Ninety per cent
of everything

is crap”



proves to be as true for data analysis as for everything else.

In fact, it’s worse for data analysis than for software development, 
because not only do we need our analytical scripts to be “correct”:
good data analysis also needs to be concerned with

• correctness and meaningfulness of our analytical processing
• and correctness and validity of inputs
• and correct interpretation of the outputs (or at least, the clearest 

possible presentation to minimise the chances of 
misinterpretation.)

Most of the data analysis processes I see these days look something like 
this.

We normally usually start with an exploration and development phase 
during which we explore the data and formulate our approach. During 
this phase, there are two main things that can go wrong. The first is that 
we can misunderstand something important, whether it be about the 
meaning or interpretation of the data, the meaningful manipulations that 
can be applied to the data, or the domain under study. We call these 
kinds of mistakes errors of interpretation, and they play a much more 
significant role in data analysis than in most other forms of software 
development.

Once we’ve decided on an approach, we have to implement it—whether 
that’s by writing Python code, or R code or simply setting up some 
analysis in a graphical user interface. Again, it’s entirely possibly to make 
errors at this stage, and we call these errors of implementation. These are 
the errors that do have a direct analogue in software development: these 
are just bugs.

If we avoid errors in the first two phases, we then have to use the system 
we have developed to perform the analysis. If our tool is a spreadsheet, 
or even a Jupyter Notebook, it may be that by the time we have finished 
“implementing” the analysis has already been performed on the input 
data, but many cases, there’s still something to do here. And at this 
point, we have further opportunities to make errors by using the 
analytical system incorrectly—mixing up our inputs, getting the format 
wrong, forgetting to disable some debugging shortcut, pasting the data 
into the wrong cells, picking up the wrong output file, failing actually to 
run the analysis and therefore looking at the last development results 
etc. We call these kinds of mistakes errors of process.

Another thing that can—and frequently does—go wrong here is that the 
data we actually use for the analysis (if it is not identical to the data used 
to develop the analysis, even if that was just a subset of the real data) may 
not correspond closely to data used to build the analytical process. It’s 
normal (and proper) for decisions about parameters and approaches to be 
strongly influenced by the shape of the development data, and if the data 
used in production is materially different, it may be that choices we 
made are not appropriate. We call problems in this area errors of 



applicability. The software is fine: the data just doesn’t meet the analytical 
assumptions.

Finally, even if everything goes perfectly, we (or the end user) can still 
misinterpret the results—whether by holding the graph upside down, by 
not understanding probability, by misunderstanding the scale or 
whatever.

And a frightening number of these misinterpretation of the answer result 
in reversing the correct course of action—targeting the worst prospects, 
lending to the worst credit risks, flying the aeroplane when the system 
said “100%”, meaning maximum danger, but we interpreted it as “100% 
AOK.”

And then in most cases, these days, even if the analysis started of as a 
quick, one-off affair, it ends up being run over and over, on different 
input data. And of course, all the risks of getting something wrong in the 
operational deployment phase then arise again, possibly more so because 
the memory of coding the system is less fresh, or perhaps the process is 
run by someone else who is less familiar with it.

If you buy into the characterisation I’ve outlined here at all, it can be 
sobering to attach probability estimates to each phase of the analysis 
cycle and multiply them out to see how likely you are to get a good 
result. In this case, with what seem like quite optimistic probabilities to 
me, we end up with only a 32% chance of the getting the right answer.

And then to multiply through a few times by the over probability of 
getting the operational phase right, to simulate running the analysis 
repeatedly. With my numbers, successive runs drop to 19%, 11%, 6%, . . .

So what’s to be done?

TDDA Level Zero 

The first thing I would suggest, even if you’re going to do nothing else, is 
to capture—to measure, if you will—what your analytical process does. 
So, however you do your analysis, whatever rule or heuristic or procedure 
you use for deciding when you’re done, when you’re happy to share or 
use or believe your results, keep that the same. But capture and record 
what you’ve done.

• Capture your inputs (or a useful subset, if the inputs are 
impractically large)

• Encapsulate your process as a runnable scripts—there’s a whole 
field dedicated to this idea, going by the name reproducible research

• Capture your outputs
• And develop some kind of verification procedure that checks that 

the same inputs with the same analytical process produce the 
same answer as before.

Now you say—well, how could this fail? If I don’t change anything, the 
results will be the same, right?

Wrong.



You could upgrade your Python, or your operating system, or some 
packages. Or Autoupdate might do that for you. You could run it on a 
different system. You could use random numbers in your code. You could 
have a hardware fault or a software fault. You could have a race condition 
in your code. Your disk could corrupt your data. Or your source code. Or 
a helpful colleague could improve the code without your realising. And 
those are just some of the things that could happen inadvertently.

Even more likely, you could use the code again, on new or updated data. 
And in doing so, you might fix a bug, or extend things to handle some 
new values, or an extra field, or a new data format, or a moving 
distribution. Probably in a way that couldn’t possibly affect your previous 
results. And yet . . .

And I have to put in a small further rant against mocking here. Time and 
again I hear TDD folk say “it’s not my responsibility to check that the 
database works” or that numpy or SciKit Learn work.

To which I say: true enough.

But it is your problem if you don’t use database correctly, or if the 
interface to the data base changes. And it is your problem if a bug in  the 
database causes your analysis to produce the wrong answer. So you have 
to test that the systems you depend on work correctly in the context of 
your code and your usage pattern. So maybe software engineers can get 
away with mocking, but as analyst, your output is analysis, and it’s your 
responsibility to make sure it’s correct, even with the imperfect tools the 
world gives you.

So consider upgrading your system by running this handy command.

pip uninstall mock 

So that’s TDDA Level Zero. And of course, you can and should extend it, 
at least by adding extra tests cases when you use the process and run on 
new data, especially if it differs in some important way from the original 
data. Needless to say, if you want to add further, specific tests, that’s a 
good idea too. But don’t underestimate the benefits even of just using 
Level Zero.

We have a subclass of unittest.TestCase (writableunittest.WritableTestCase) 
that supports much of this, which we will be making available soon 
through the tdda account on Github.

The output here shows an example of using it to test some graph drawing 
code. In this case, you can see a single test fails. But rather than just 
reporting the failure, it tells you exactly what command you can use to 
see the differences between the files. It also lets you specify lines or part 
so lines that ought to be ignores, and reports what those are. Here, 
Copyright lines are ignored. The library has also written cleaned up 
copies of both the actual and expected results so that you can diff those 

pip uninstall mock



without the noise.

The library then has a -W flag that you can use if and when you convince 
yourself that the change is not a semantic one to regenerate all the 
reference results against which comparisons are made

 

And if you run again after that, the tests pass.

 
TDDA Level One 

The second area we’ve been giving a lot of thought to is constraints and 
declarations. By this, I mean checks that we can put place in that will 
quickly detect that something has gone badly wrong even if they can’t 
really tell you why.

The concept is that we develop sets of constraints that should be true of 
the data at various points—particularly to the input dataset(s) and the 
results, but also potentially to any—or all—intermediate datasets. And 
these constraints can be almost anything. They can apply to individual 
fields:

• Age should be between 0 and 150
• Age should be an integer
• CustomerID shouldn’t be NULL
• Credit Card Number should have 16 digits
• CustomerID should be a valid UUID4
• Velocity should not exceed Speed of Light

and they can apply to whole datasets

• The dataset must contain a field CID
• The dataset must contain exactly 118 records
• Exactly one field should have an “O” tag

or to sets of fields in the dataset

• StartDate ≤ EndDate
• F = ma (to 6 decimal places)

TDDA LEVEL ONE: 

CONSTRAINTS



Anyway, constraints are great, and can certainly pick up all sorts of 
problems, but in truth, who’s going to write them? No one is going to 
write them.

So the second bit of technology we’ve been developing for TDDA is an 
automatic constraint discovery (or induction) system. The idea is very 
simple: you give the TDDA Discovery Process a dataset and it mindlessly 
spits out facts that are true about that dataset in the form of constraints 
that you might wish to adopt. To be clear, there is nothing smart about 
the system at all: it doesn’t currently try to work out how likely a 
constraint is to be useful, or to continue holding. It just gives you a 
starting point on the basis that

(1) something’s better than nothing
(2) most people are not going to bother sitting down trying in a set of 

constraints they expect to be true of the data, but they might be 
willing to look over a list of suggestions and cull the ones that are 
obviously ridiculous.

And as a bonus, the constraints the system spits out—and fails to spit out
—are often quite revealing.

I’ll show you an example.

This is the top of the Periodic Table, a dataset with 118 rows that I 
pieced together from Wikipedia a few years ago. It’s not a great example 
for TDDA, in that we don’t update the Periodic Table materially too 
often, but it should be familiar to some of you.

Our analysis software—Miró—has a command called discover, and 
when you use this it simply runs over a dataset discovering facts about 
them and expressing them as constraints using a Lisp-like expression 
language.

So here, it first declares that all the fields it fields are in the dataset, and 
that there are 16 of them.

Next, it goes through and makes specific declarations about each field. 
So here, the atomic number, Z, is an integer between 1 and 118, it has no 
nulls and each value is unique. And those might or might no be 
constraints you want. If a new periodic does come along, one possibilities 
certainly that it will add element 119—probably ununnonium—but 
equally, you might want to know about that if it does happen, so maybe 
you’d like a warning or an error.

It’s a pretty mindless procedure, but it does try to spot things like when a 
string field has a small cardinality and suggest limiting values to those it 
sees, like for the Chemical Series here.



It also spits out a nice tabular summary and can save the results both as 
this series of executable lisp-like statements (that our software 
understands), but also as a JSON file that almost anything could 
consume. It generates multi-field and dataset constraints too, though I 
haven’t shown those here.

Right now, this functionality is only in our software, but over the next 
few months we plan to release a version at least for Pandas, and possibly 
beyond that. Watch the Github account for tdda.

The other important thing to note is that constraints the system doesn’t 
spit out can be just as important and useful as ones it does. Oh: my 
customer ID isn’t unique in the customer table. And it does contain 
missing values. That’s not good . . .

Conclusion 

So thank you for listening.

To recap, test-driven data analysis is more of an idea than a reality at the 
moment, with its guiding principle being to take the ideas from test-
driven development and to adapt them to help increase the likelihood of 
getting our data analysis correct.

Thus far, we have two concrete suggestions for how to do this. The sine 
qua non—Level Zero—is the reference test, by which we mean using the 
ideas from reproducible research to encapsulate an analytical process in 
an executable form, to capture one or more collections of inputs and 
outputs and to develop a way of testing that the inputs, when passed 
through the analytical process, produce the intended outputs. In terms 
of tooling, we can begin to offer support for this with extensions to 
Python’s unittest module that help with useful semantic comparisons 
and reference output re-writing. There is a version on Github now, but 
the only documentation is in the form of some posts on the TDDA blog 
about Apple Health Data. I’ll update writableunittest in the next week or 
so and document it then tweet about it from @tdda0 probably blog 
about it too.

The next idea—Level One—is to use constraints to assert properties of 
input, output and perhaps intermediate datasets that should always be 
true. In terms of tooling, we have developed for our software, Miró, a 
discovery process that can suggest constraints that are true within an 
example dataset, and the ability to record these in executable, testable 
form. We fully intend to extend these to at least Pandas and perhaps 
Postgres and make these available on a permissive license over the next 
few months.



I hope you find these ideas useful. You can read more and pick stuff up 
from all the places listed below.

In the unlikely event that I’ve comfortably met the constraint of the 
time allocated to me, I’ll be happy to take any questions, now or 
throughout the rest of the conference.

Thank you.


