
TEST-DRIVEN
DATA ANALYSIS

Nicholas J. Radcliffe
Stochastic Solutions Limited

& Department of Mathematics, University of Edinburgh

PyData London 2017 • Tutorial • 5th May 2017
http://www.tdda.info/pdf/tdda-tutorial-pydata-london-2017.pdf

We need to extend TDD’s idea of testing for
software correctness

with the idea of testing for
meaningfulness of analysis,

correctness and validity of input data,
& correctness of interpretation.

TDD ↦ TDDA

INITIAL
SUCCESS

CHOOSE  
APPROACH

ERROR OF
INTERPRETATION

✔

✗

Fail to
understand

data,
problem
domain,

or methods

DEVELOP
ANALYTICAL

PROCESS

ERROR OF
IMPLEMENTATION

✗
Mistakes
during
coding

DEVELOPMENT PHASE

Using sample/initial
datasets & inputs to
develop the process

✔

OPERATIONAL PHASE

Using the process with other
datasets and inputs, possibly

having different characteristics

RUN
ANALYTICAL

PROCESS

ERROR OF
PROCESS

✗
Use the
software

incorrectly SUCCESS

ERROR OF
APPLICABILITY

✔

✗

Mismatch
between

development
data or

assumptions
& deployment

data

PRODUCE
ANALYTICAL

RESULTS

✔ INTERPRET
ANALYTICAL

RESULTS

✔

Misinterpret
results ✗

(bugs)

INITIAL
SUCCESS

CHOOSE  
APPROACH

ERROR OF
INTERPRETATION

✔

✗

Fail to
understand

data,
problem
domain,

or methods

DEVELOP
ANALYTICAL

PROCESS

ERROR OF
IMPLEMENTATION

✗
Mistakes
during
coding

✔ RUN
ANALYTICAL

PROCESS

ERROR OF
PROCESS

✗
Use the
software

incorrectly SUCCESS

ERROR OF
APPLICABILITY

✔

✗

Mismatch
between

development
data or

assumptions
& deployment

data

PRODUCE
ANALYTICAL

RESULTS

✔ INTERPRET
ANALYTICAL

RESULTS

✔

Misinterpret
results ✗

80%

20%

70%

30%

90%

10%

80%

20%

90%

20%

36%

If you buy into this model, it’s sobering to attach
probability estimates to each transition and calculate the

probability of success after a few runs . . .

23%
19%

10%

⋱
(bugs)

10%

1. “Reference” Tests
• cf. system/integration tests in TDD
• With support for exclusions, regeneration, helpful

reporting etc.
• Re-run these tests all the time, everywhere

2. Constraint Discovery & Verification
• a bit like unit tests for data
• can cover inputs, outputs and intermediate results
• automatically discovered

• more-or-less including regular expressions for
characterising strings (Rexpy)

• Use as part of analysis to verify inputs, outputs and
intermediates (as appropriate)

TDDA: MAIN IDEAS

1. From PyPI (recommended)
pip install tdda

2. From Github (source)
git clone https://github.com/tdda/tdda.git

TDDA LIBRARY

• Runs on Python 2 & Python 3, Mac, Linux & Windows, under
unittest and pytest

• MIT Licensed
• Documentation:

• Sphinx source in doc subdirectory
• Built copy at http://pythonhosted.org/tdda

• Quick reference: http://www.tdda.info/pdf/tdda-quickref.pdf

ANALYTICAL
PROCESS

INPUTS OUTPUTS
DATA

& PARAMETERS
DATASETS, NUMBERS,

GRAPHS, MODELS,
DECISIONS ETC.

REFERENCE TESTS

Develop a verification procedure (diff) and periodically rerun:
do the same inputs (still) produce the same outputs?

Record
inputs

Capture as
scripted, parameterised
executable procedure

Record
(“reference”)

outputs
(“reproducible research”)

REFERENCE TEST SUPPORT

• Comparing actual string (in memory or in file) to reference
(expected) string (in file)

• Exclude lines with substrings or regular expressions
• Preprocess output before comparison
• Write actual string produced to file when different
• Show specific diff command needed to examine differences
• Check multiple files in single test; report all failures
• Automatically re-write reference results after human

verification.

1: UNSTRUCTURED (STRING) RESULTS

Check a single (in-memory) string against a refererence file

self.assertStringCorrect(string, ref_path, . . .)

Check a single generated file against a reference file:

self.assertFileCorrect(actual_path, ref_path, . . .)

Check a multiple generated files against respective reference files:

self.assertFilesCorrect(actual_paths, ref_paths, . . .)

REFERENCE TEST SUPPORT
UNSTRUCTURED (STRING) METHODS

EXERCISE 1: STRING DATA REFERENCE TESTS

1. Copy examples somewhere:
 cd ~/tmp
 python -m tdda.referencetest.examples
 cd referencetest-examples

2. Look at reference output:
 reference/string_result.html
 reference/file_result.html

3. Run tests (should pass).
 cd unittest; python test_using_referencetestcase.py; cd ..
 or cd pytest; pytest; cd ..

• Although tests pass, output is not identical

— version number and copyright lines in reference files are different

NOTE

self.assertFileCorrect(outpath, 'file_result.html',
 ignore_patterns=['Copyright', 'Version'])

(This will be clearer after next part of exercise.)

I. CHECK THE TESTS PASS

EXERCISE 1 (CTD): STRING DATA REFERENCE TESTS

4. Modify generators.py
e.g. Capitalise <h1> ... </h1> contents in the generate_string function

5. Repeat step 3 to run tests again. Two tests should fail.
 cd unittest; python test_using_referencetestcase.py; cd ..
 or cd pytest; pytest; cd ..

6. Check modified results in (reported) temporary directory are as expected; run the
suggested diff command or something similar (opendiff, fc, …). Again, note that
in addition to the changes you introduced, the Copyright and Version lines are
different

7. On the assumption that these now represent the verified,* new target results, re-
write the reference output with
 cd unittest; python test_using_referencetestcase.py -W
 or cd pytest; pytest --write-all -s

8. Repeat step 5 to run tests again. All tests should pass.

II. MODIFY THE GENERATOR, VERIFY RESULTS, RE-WRITE REFERENCE RESULTS

* WARNING
If you habitually re-write results when tests fail without carefully verifying the new

results, your tests will quickly become worthless.
With great power comes great responsibility: use TDDA Reference Tests wisely!

9. Modify generators.py code to change version number in output.
10. Repeat step 3 to run tests again. All tests should still pass since version number is

excluded by ignore_substrings=['Copyright', ‘Version'] parameter to
assertStringCorrect.

EXERCISE 1 (CTD): STRING DATA REFERENCE TESTS
III. MODIFY THE RESULTS VERSION NUMBER; CHECK STILL OK

REFERENCE TEST SUPPORT

• Comparing generated DataFrame or CSV file to reference
DataFrame or CSV file

• Show specific diff command needed to examine differences
• Check multiple CSV files in single test; report all failures
• Choose subset of columns (with list or function) to compare
• Choose whether to check (detailed) types
• Choose whether to check column order
• Choose whether to ignore actual data in particular columns
• Choose precision for floating-point comparisons
• Automatic re-writing of verified (changed) results.

2: STRUCTURED DATA METHODS (DATAFRAMES & CSV)

Check a single generated CSV file against a refererence CSV file

self.assertCSVFileCorrect(actual_path, ref_csv, . . .)

Check multiple generated files against respective reference CSV files:

self.assertCSVFilesCorrect(actual_paths, ref_csvs, . . .)

Check an (in-memory) DataFrame against a reference CSV file

self.assertDataFrameCorrect(df, ref_csv, . . .)

Check an (in-memory) DataFrame against another (in-memory) DataFrame

self.assertDataFramesEqual(df, ref_df, . . .)

REFERENCE TEST SUPPORT
STRUCTURED DATA METHODS (DATAFRAMES & CSV)

EXERCISE 2: DATAFRAME/CSV REFERENCE TESTS

1. If you’ve done Exercise 1, you already have the examples in the same directory
2. Look at reference output:

 reference/dataframe_result.csv
 reference/dataframe_result2.csv

3. Run tests (should pass).
 cd unittest; python test_using_referencetestcase.py; cd ..
 cd pytest; pytest; cd ..

NOTE

I. CHECK THE TESTS PASS

from dataframes import generate_dataframe

print(generate_dataframe())

You can look at the data frame being generated with this 2-line program (save as show.py)

EXERCISE 2: DATAFRAME/CSV REFERENCE TESTS

4. Modify dataframes.py
e.g. Change the default precision from 3 to 2 in the generate_dataframe
function. This will cause the string column s to be different.

5. Repeat step 3 to run tests again. Three tests should fail.
 cd unittest; python test_using_referencetestcase.py; cd ..
 or cd pytest; pytest; cd ..

6. Look at the way differences are reported, and check that the only material change is
to column s, as expected.

7. On the assumption that this new output now represents the new, verified target
result,* re-write the reference output with
 cd unittest; python test_using_referencetestcase.py -W
 or cd pytest; pytest --write-all -s

8. Repeat step 5 to run tests again. All tests should now pass.

II. MODIFY THE DATA GENERATOR, VERIFY RESULTS, RE-WRITE REFERENCE RESULTS

* WARNING
If you habitually re-write results when tests fail without carefully verifying the new

results, your tests will quickly become worthless.
With great power comes great responsibility: use TDDA Reference Tests wisely!

CONSTRAINT
GENERATION

& VERIFICATION

CONSTRAINTS
• Very commonly, data analysis uses data tables (e.g.

DataFrames) as inputs, outputs and intermediate results

• There are many things we know (or at least expect) to be true
about these data tables

• Could write down all these expectations as constraints and
check that they are actually satisfied during analysis . . . but life’s
too short! (Also: humans are rather error-prone)

THE BIG IDEA
• Get the computer to discover constraints satisfied by example

datasets automatically.

• Verify against these constraints, modifying as required

• (Humans much happier to make tweaks than start from scratch)

SINGLE FIELD CONSTRAINTS DATASET CONSTRAINTS

Age ≤ 150 The dataset must contain field CID

type(Age) = int Number of records must be 118

CID ≠ NULL One field should be tagged O

CID unique Date should be sorted ascending

len(CardNumber) = 16 MULTI-FIELD CONSTRAINTS

Base in {“C”, “G”, “A”, T”} StartDate ≤ EndDate

Vote ≠ “Trump” AlmostEqual(F, m * a, 6)

StartDate < tomorrow() sum(Favourite*) = 1

v < 2.97e10 minVal ≤ medianVal ≤ maxVal

Height ~ N(1.8, 0.2) V ≤ H * w * d

EXAMPLE CONSTRAINTS

CONSTRAINTS SUPPORTED BY TDDA LIBRARY

KIND DESCRIPTION

min Minimum allowed value; on verification interpreted with proportionate
tolerance epsilon.

✔ ✔ ✔ ✗

max Maximum allowed value; on verification interpreted with proportionate
tolerance epsilon.

✔ ✔ ✔ ✗

sign "positive", "non-negative", "zero", "non-positive" or
"negative".

✔ ✔ ✗ ✗

max_nulls 0 if nulls not allowed. In principle, can be higher values (in particular,
1), but discover function does not use these at present.

✔ ✔ ✔ ✔

no_duplicates true if duplicates are not allowed. ✔ ✔ ✔ ✔

min_length smallest allowed string length ✗ ✗ ✗ ✔

max_length largest allowed string length ✗ ✗ ✗ ✔

rex list of regular expressions; strings must match at least one.
(Available from version 0.4.0 on.)

✗ ✗ ✗ ✔

STRIN
G

D

A
TE

N
U

M
ERIC

BO

O
LEA

N

CONSTRAINT GENERATION & VERIFICATION

1. Copy examples somewhere:
 cd ~/tmp
 python -m tdda.constraints.examples
 cd constraints-examples

2. Generate constraints from first 92 elements of periodic table (testdata/elements92.csv)
 cd constraints-examples
 python elements_discover_92.py
 or tdda discover testdata/elements92.csv elements92.tdda

3. Examine output (elements92.tdda)
4. Perform verification of same data (as DataFrame). Should pass.

 python elements_verify_92.py
 or tdda verify testdata/elements92.csv elements92.tdda

Obviously, verifying a dataset against the constraints
generated from that dataset should always work!

pip install feather-format

{
 "fields": {
 "Z": {"type": "int", "min": 1, "max": 92, "sign": "positive", "max_nulls": 0, "no_duplicates": true},
 "Name": {"type": "string", "min_length": 3, "max_length": 12, "max_nulls": 0, "no_duplicates": true},
 "Symbol": {"type": "string", "min_length": 1,"max_length": 2, "max_nulls": 0, "no_duplicates": true},
 "Period": {"type": "int", "min": 1, "max": 7, "sign": "positive", "max_nulls": 0},
 "Group": {"type": "int", "min": 1, "max": 18,"sign": "positive"},
 "ChemicalSeries": {"type": "string", "min_length": 7, "max_length": 20, "max_nulls": 0,
 "allowed_values": ["Actinoid", "Alkali metal", "Alkaline earth metal”,
 "Halogen", “Lanthanoid", "Metalloid", "Noble gas”,
 "Nonmetal", "Poor metal", "Transition metal”]},
 "AtomicWeight": {"type": "real", "min": 1.007946, "max": 238.028914, "sign": "positive", "max_nulls": 0},
 "Etymology": {"type": "string", "min_length": 4, "max_length": 39, "max_nulls": 0},
 "RelativeAtomicMass": {"type": "real", "min": 1.007946, "max": 238.028914, "sign": “positive",
 "max_nulls": 0},
 "MeltingPointC": {"type": "real", "min": -258.975, "max": 3675.0, "max_nulls": 1},
 "MeltingPointKelvin": {"type": "real", "min": 14.2, "max": 3948.0, "sign": "positive", "max_nulls": 1},
 "BoilingPointC": {"type": "real", "min": -268.93, "max": 5596.0, "max_nulls": 0},
 "BoilingPointF": {"type": "real", "min": -452.07, "max": 10105.0, "max_nulls": 0},
 "Density": {"type": "real", "min": 8.9e-05, "max": 22.610001, "sign": "positive", "max_nulls": 0},
 "Description": {"type": "string", "min_length": 1, "max_length": 83},
 "Colour": {"type": "string", "min_length": 4, "max_length": 80}
 }
}

EXAMPLE: elements92.tdda

EXAMPLE SUCCESSFUL VERIFICATION

CONSTRAINT GENERATION & VERIFICATION

5. Now run verification of larger dataset (first 118 elements of periodic table) against
the same constraints. Should fail (because, for example, atomic number now goes
to 118).
python elements_verify_118_against_92.py
or tdda verify testdata/elements118.csv elements92.tdda

6. Repeat verification of larger dataset (118 elements) against contraints generated
against that same (118) data. Should pass.
python elements_verify_118.py
or tdda verify testdata/elements118.csv elements118.tdda

7. Finally, verify the constraints from 118 data against the 92 data. Should pass.
 tdda verify testdata/elements92.csv elements118.tdda

Note: fewer constraints are discovered for elements118
than for elements92 (67 against 72). This is because there

are nulls in some fields in the 118 data (the melting points,
density etc.) but not in the 92 data.

EXAMPLE UNSUCCESSFUL VERIFICATION

ABSENT CONSTRAINTS

Gregory (Scotland Yard detective): “Is there any other point
to which you would wish to draw my attention?”
Holmes: “To the curious incident of the dog in the night-time.”
Gregory: “The dog did nothing in the night-time.”
Holmes: “That was the curious incident.”

— Silver Blaze, in Memoirs of Sherlock Holmes
Arthur Conan Doyle, 1892.

CONSTRAINTS API
from tdda.constraints.pdconstraints import discover_constraints

constraints = discover_constraints(df)

with open('constraints.tdda', 'w') as f:
 f.write(constraints.to_json())

from tdda.constraints.pdconstraints import verify_df

verification = verify_df(df, ‘constraints.tdda’) # (printable object)

constraints_df = verification.to_frame()) # (Pandas DataFrame)

DISCOVERY

VERIFICATION

																	field		failures		passes		type			min	min_length				max		\	
0									AtomicWeight									2							3		True		True								NaN		False				
2																	Name									1							4		True			NaN							True				NaN				
3														Density									2							3		True		True								NaN		False				
4			MeltingPointKelvin									1							4		True		True								NaN			True				
5															Symbol									1							4		True			NaN							True				NaN				
7								BoilingPointF									1							3		True		True								NaN			True				
8												Etymology									2							2		True			NaN							True				NaN				
9			RelativeAtomicMass									2							3		True		True								NaN		False				
11							MeltingPointC									1							3		True		True								NaN			True				
12																			Z									1							5		True		True								NaN		False				
13							BoilingPointC									1							3		True		True								NaN			True				

			max_length		sign	max_nulls	no_duplicates	allowed_values			
0									NaN		True					False											NaN												NaN			
2							False			NaN						True										True												NaN			
3									NaN		True					False											NaN												NaN			
4									NaN		True					False											NaN												NaN			
5							False			NaN						True										True												NaN			
7									NaN			NaN					False											NaN												NaN			
8							False			NaN					False											NaN												NaN			
9									NaN		True					False											NaN												NaN			
11								NaN			NaN					False											NaN												NaN			
12								NaN		True						True										True												NaN			
13								NaN			NaN					False											NaN												NaN		

OUTPUT of to_frame()

CONSTRAINTS
True

FALSE

NaN

Satisfied

Not satisfied

No constraint

TDDA FUTURES
1. Immediate future: Rexpy: Automatic discovery of regular

expressions for characterising string fields.

• Already part of TDDA library; just not part of discover/
verify yet

• Coming soon (0.4.0)

2. Join key discovery and verification between datasets

3. Characterizing distributions

4. “Nearly” constraint discovery

5. Possibly JSON etc. (cf. JSON Schemas)

6. Lots of other ideas.

@tdda0

https://github.com/tdda

Correct interpretation: Zero
Error of interpretation: Letter “Oh”

@njr0

njr@StochasticSolutions.com

#tdda* *tweet (DM) us email
 address for invitation
 Or email me.

http://tdda.info

www.tdda.info/pdf/tdda-tutorial-pydata-london-2017.pdf

Rexpy
Regular Expressions by Example
Source: git clone http://github.com/tdda

Try online: http://rexpy.herokuapp.com
Package: pip install tdda

Regular Expressions
212–988–0321
476 123 8829

1 701 734 9288
 (617) 222 0529

^1?[\(]?\d{3}\)?[\–]\d{3}[\–]\d{4}$
digits

(3)
digits

(3)
digits

(3)
start

of
line

end
of

line

space
or

hyphen

space
or

hyphen

optional
space

or open
bracket

optional
close

bracket

optional
1

^\d{3}\–\d{3}\–\d{4}$

212–988–0321

^\d+\–\d+\–\d+$

^[1–2]+\–[8–9]+\–[0–3]+$

less specific:
+ = 1 or more times

specific range of digits

as before

^212\–988\–0321$ totally specific

^.*$
matches anything

. = any char
* = 0 or more times

Regular Expressions

Regular Expressions

MN 55402
OH 45202

^[A-Z]{2} \d{5}$

Regular Expressions

MN 55402
OH 45202-7735

^[A–Z]{2} \d{5}(\–\d{4})?$

unescaped parentheses
(no backslash) “tag”

sub-expressions

optional

You have a problem.

“I know, I’ll use regular expressions.”

Now you have two problems

You think

Powerful

Hard to write

Harder to read

Hard to quote/escape†

Harder still to debug

*Ugly

† r'...' is your friend*Butt . . .

Pros & Cons

Verbal Expressions
verbal_expression = VerEx()
tester = (verbal_expression.
 start_of_line().
 find('http').
 maybe('s').
 find('://').
 maybe('www.').
 anything_but(' ').
 end_of_line()
)

Why not let
the computer do

the work?

Rexpy
is our early attempt to let the computer

from examples
find useful regular expressions

$ python

>>> tels = ['212-988-0321', '987-654-3210', '476 123 8829', '123 456 7890',
>>> '701 734 9288', '177 441 7712', '617 222 0529', '222 111 9276']
>>> regexps = rexpy.extract(tels)
>>> for r in regexps:
... print r
^\d{3}\-\d{3}\-\d{4}$
^\d{3}\ \d{3}\ \d{4}$

Rexpy currently never groups white space
with punctuation; but it will soon.

Command Line
$ rexpy --help

Usage:

 rexpy [FLAGS] [input file [output file]]

or

 python -m tdda.rexpy.rexpy [FLAGS] [input file [output file]]

If input file is provided, it should contain one string per line; otherwise lines will be read from
standard input.

If output file is provided, regular expressions found will be written to that (one per line);
otherwise they will be printed.

FLAGS are optional flags. Currently::

 -h, --header Discard first line, as a header.

 -?, --help Print this usage information and exit (without error)

 -g, --group Generate capture groups for each variable fragment of each regular expression
 generated, i.e. surround variable components with parentheses

 e.g. '^([A-Z]+)\-([0-9]+)$'
 becomes '^[A-Z]+\-[0-9]+$'

 -u, --underscore Allow underscore to be treated as a letter. Mostly useful for matching
 identifiers. Also allow -_.

 -d, --dot Allow dot to be treated as a letter. Mostly useful for matching identifiers.

 Also -. --period.

 -m, --minus Allow minus to be treated as a letter. Mostly useful for matching
 identifiers. Also --hyphen or --dash.

 -v, --version Print the version number.

API: Pure Python

from tdda import rexpy

corpus = ['123-AA-971', '12-DQ-802', '198-AA-045', '1-BA-834']
results = rexpy.extract(corpus)
print('Number of regular expressions found: %d' % len(results))
for rex in results:
 print(' ' + rex)

$ python ids.py
Number of regular expressions found: 1
 ^\d{1,3}\-[A-Z]{2}\-\d{3}$

 Get examples: python -m tdda.rexpy.examples

ids.py:

RESULTS

API: Pandas
import pandas as pd

from tdda import rexpy

df = pd.DataFrame({'a3': ["one", "two", pd.np.NaN],
 'a45': ['three', 'four', 'five']})
re3 = rexpy.pdextract(df['a3'])
re45 = rexpy.pdextract(df['a45'])
re345 = rexpy.pdextract([df['a3'], df['a45']])
print(' re3: %s' % re3)
print(' re45: %s' % re45)
print('re345: %s' % re345)

$ python pandas_ids.py
 re3: [u'^[a-z]{3}$']
 re45: [u'^[a-z]{4,5}$']
re345: [u'^[a-z]{3,5}$']

pandas_ids.py:

RESULTS

@tdda0

https://github.com/tdda

Correct interpretation: Zero
Error of interpretation: Letter “Oh”

@njr0

njr@StochasticSolutions.com

#tdda* *tweet (DM) us email
 address for invitation
 Or email me.

http://tdda.info

www.tdda.info/pdf/tdda-tutorial-pydata-london-2017.pdf

