
DEVELOPMENTS IN
TEST-DRIVEN

DATA ANALYSIS

Nick Radcliffe
Stochastic Solutions Limited

& Department of Mathematics, University of Edinburgh

PyData Berlin 2017 • 1st July 2017
http://www.tdda.info/pdf/tdda-pydata-berlin-2017.pdf

SOFTWARE DEVELOPMENT (WITH TDD)

Write some
(failing) tests

Write/change code
to make tests pass

Simplify
code

Add functionality
/ Fix bugs

Constantly run
tests with CI?

Often:
• Well-understood inputs
• Well-understood goal
• Many kinds of errors/failures are unmistakable

We need to extend TDD’s idea of testing for
software correctness

with the idea of testing for
meaningfulness of analysis,

correctness and validity of input data,
& correctness of interpretation.

TDD ↦ TDDA

INITIAL
SUCCESS

CHOOSE  
APPROACH

ERROR OF
INTERPRETATION

✔

✗

Fail to
understand

data,
problem
domain,

or methods

DEVELOP
ANALYTICAL

PROCESS

ERROR OF
IMPLEMENTATION

✗
Mistakes
during
coding

DEVELOPMENT PHASE

Using sample/initial
datasets & inputs to
develop the process

✔

OPERATIONAL PHASE

Using the process with other
datasets and inputs, possibly

having different characteristics

RUN
ANALYTICAL

PROCESS

ERROR OF
PROCESS

✗
Use the
software

incorrectly SUCCESS

ERROR OF
APPLICABILITY

✔

✗

Mismatch
between

development
data or

assumptions
& deployment

data

PRODUCE
ANALYTICAL

RESULTS

✔ INTERPRET
ANALYTICAL

RESULTS

✔

Misinterpret
results ✗

(bugs)

INITIAL
SUCCESS

CHOOSE  
APPROACH

ERROR OF
INTERPRETATION

✔

✗

Fail to
understand

data,
problem
domain,

or methods

DEVELOP
ANALYTICAL

PROCESS

ERROR OF
IMPLEMENTATION

✗
Mistakes
during
coding

✔ RUN
ANALYTICAL

PROCESS

ERROR OF
PROCESS

✗
Use the
software

incorrectly SUCCESS

ERROR OF
APPLICABILITY

✔

✗

Mismatch
between

development
data or

assumptions
& deployment

data

PRODUCE
ANALYTICAL

RESULTS

✔ INTERPRET
ANALYTICAL

RESULTS

✔

Misinterpret
results ✗

80%

20%

70%

30%

90%

10%

80%

20%

90%

20%

36%

If you buy into this model, it’s sobering to attach
probability estimates to each transition and calculate the

probability of success after a few runs . . .

23%
15%

10%

⋱
(bugs)

10%

1. “Reference” Tests
• cf. system/integration tests in TDD
• With support for exclusions, regeneration, helpful

reporting etc.
• Re-run these tests all the time, everywhere

2. Automatic Constraint Discovery & Verification
• a bit like unit tests for data
• can cover inputs, outputs and intermediate results
• automatically discovered

• more-or-less including regular expressions for
characterising strings (Rexpy)

• Use as part of analysis to verify inputs, outputs and
intermediates (as appropriate)

TDDA: MAIN IDEAS

1. From PyPI (recommended)
pip install tdda

2. From Github (source)
git clone https://github.com/tdda/tdda.git

TDDA LIBRARY

• Runs on Python 2 & Python 3, Mac, Linux & Windows, under
unittest and pytest

• MIT Licensed
• Documentation:

• Sphinx source in doc subdirectory
• Built copy at http://pythonhosted.org/tdda

• Quick reference: http://www.tdda.info/pdf/tdda-quickref.pdf

ANALYTICAL
PROCESS

INPUTS OUTPUTS
DATA

& PARAMETERS
DATASETS, NUMBERS,

GRAPHS, MODELS,
DECISIONS ETC.

REFERENCE TESTS

Develop a verification procedure (diff) and periodically rerun:
do the same inputs (still) produce the same outputs?

Record
inputs

Capture as
scripted, parameterised
executable procedure

Record
(“reference”)

outputs
(“reproducible research”)

REFERENCE TEST SUPPORT

• Comparing actual string (in memory or in file) to reference
(expected) string (in file)

• Exclude lines with substrings or regular expressions
• Preprocess output before comparison
• Write actual string produced to file when different
• Show specific diff command needed to examine differences
• Check multiple files in single test; report all failures
• Automatically re-write reference results after human

verification.

1: UNSTRUCTURED (STRING) RESULTS

REFERENCE TEST SUPPORT

• Comparing generated DataFrame or CSV file to reference
DataFrame or CSV file

• Show specific diff command needed to examine differences
• Check multiple CSV files in single test; report all failures
• Choose subset of columns (with list or function) to compare
• Choose whether to check (detailed) types
• Choose whether to check column order
• Choose whether to ignore actual data in particular columns
• Choose precision for floating-point comparisons
• Automatic re-writing of verified (changed) results.

2: STRUCTURED DATA METHODS (DATAFRAMES & CSV)

demonstration:
reference tests

CONSTRAINT
GENERATION

& VERIFICATION

INITIAL
SUCCESS

CHOOSE  
APPROACH

ERROR OF
INTERPRETATION

✔

✗

Fail to
understand

data,
problem
domain,

or methods

DEVELOP
ANALYTICAL

PROCESS

ERROR OF
IMPLEMENTATION

✗
Mistakes
during
coding

✔ RUN
ANALYTICAL

PROCESS

ERROR OF
PROCESS

✗
Use the
software

incorrectly SUCCESS

ERROR OF
APPLICABILITY

✔

✗

Mismatch
between

development
data or

assumptions
& deployment

data

PRODUCE
ANALYTICAL

RESULTS

✔ INTERPRET
ANALYTICAL

RESULTS

✔

Misinterpret
results ✗

80%

20%

70%

30%

90%

10%

80%

20%

90%

20%

36%

23%
15%

10%

⋱
(bugs)

10%

HOW DOES OUR PROCESS
HOLD UP IF THERE IS BAD DATA?

CHOOSE  
APPROACH

ERROR OF
INTERPRETATION

✔

✗

Fail to
understand

data,
problem
domain,

or methods

DEVELOP
ANALYTICAL

PROCESS

ERROR OF
IMPLEMENTATION

✗
Mistakes
during
coding

DEVELOPMENT PHASE

(bugs)

BAD DATA DURING DEVELOPMENT

(UNRECOGNIZED)
BAD INPUTS

BAD MODELS
or PROCESSES

OPERATIONAL PHASE

RUN
ANALYTICAL

PROCESS

ERROR OF
PROCESS

✗
Use the
software

incorrectly SUCCESS

ERROR OF
APPLICABILITY

✔

✗

PRODUCE
ANALYTICAL

RESULTS

✔ INTERPRET
ANALYTICAL

RESULTS

✔

Misinterpret
results ✗

ERROR OF
INTERPRETATION

BAD DATA DURING OPERATION

(UNRECOGNIZED)
BAD INPUTS

BAD OR
INCORRECT

RESULTS

Mismatch
between

development
data or

assumptions
& deployment

data

CONSTRAINTS
• Very commonly, data analysis uses data tables (e.g.

DataFrames) as inputs, outputs and intermediate results

• There are many things we know (or at least expect) to be true
about these data tables

• Could write down all these expectations as constraints and
check that they are actually satisfied during analysis . . . but life’s
too short! (Also: humans are rather error-prone)

THE BIG IDEA
• Get the computer to discover constraints satisfied by example

datasets automatically.

• Verify against these constraints, modifying as required

• (Humans much happier to make tweaks than start from scratch)

SINGLE FIELD CONSTRAINTS DATASET CONSTRAINTS

Age ≤ 150 The dataset must contain field CID

type(Age) = int Number of records must be 118

CID ≠ NULL One field should be tagged O

CID unique Date should be sorted ascending

len(CardNumber) = 16 MULTI-FIELD CONSTRAINTS

Base in {“C”, “G”, “A”, T”} StartDate ≤ EndDate

NI ~ ^[A-Z]{2} \d{2} \d{2} \d{2} [A-Z]$ AlmostEqual(F, m * a, 6)

StartDate < tomorrow() sum(Favourite*) = 1

v < 2.97e8 minVal ≤ medianVal ≤ maxVal

Height ~ N(1.8, 0.2) V ≤ H * w * d

EXAMPLE CONSTRAINTS

EXAMPLE

︙

～ 1,000
PARTNER

INTEGRATIONS

SKYSCANNER
PRICING
SERVICE

APPLICATIONS

︙

QUOTE
ARCHIVE

MOBILE

WEB

ANALYTICAL

EXPEDIA

BA

LMUK

etc etc

demonstration:
constraint generation

& validation

SAMPLE DATA

Request Id
Page

Request
Date

Platform
Name

Website
ID Website Cate

gory

User
Country
ID

User
Lang

Redirect
From
Code

Redirect
From

Country
Code

Redirect
To Code

082ddfbc-16f4
-11e5-8664-49
ac424641a9

2015/06/20
02:28:27

website kbns rdtgwtbphk trava RU ru DME RU AZN

c7c5cc0e-171c
-11e5-b65e-
b912e4e0d1a8

2015/06/20
07:20:08 website fwtg ggxsklrqcff trava AU en SYD AU ATH

04b1ecd0-177f
-11e5-877d-
eb4455a0cdcb

2015/06/20
19:03:21

website bfuk ooulrrux trava RO ro OTP RO BKK

d6a33e80-173
2-11e5-
a789-5b7713b
e6645

2015/06/20
09:58:02

website bqwe bbzcp airl SE sv ARN SE LHR

12084542-176f
-11e5-8360-55f
81437ffc1

2015/06/20
17:09:11 ipad ruet gjxftfzordpnfb trava IT it MXP IT MIA

Number
Of

Adults

Number
Of

Children

Number
Of

Infants

Airline
ID

Cabin
Class

Price
Currency

Ticket
Price
GBP

Card
Price
GBP

Total
Price
GBP

Card

1 0 0 HY economy RUB 106.70 ∅ 106.70
MASTERCARD
DEBIT

4 0 0 60 economy AUD 5,080.55 342.17 4,984.80 MASTERCARD
DEBIT

1 0 0 SU economy EUR 391.18 7.83 399.56
MASTERCARD
CREDIT

1 0 0 AY business SEK 779.55 0.00 779.55 AMEX

1 0 0 UX economy EUR 626.51 0.00 639.43 VISA DEBIT

SAMPLE DATA ctd

AUTO-GENERATED CONSTRAINTS
Individual Field Constraints

Name Type Min Max Sign Max
Nulls

Dups Values # regex

RequestId string length 36 length 36 0 1

PageRequestDate date 2015/06/20
01:42:23

2016/01/20
23:51:16

0

 :time-before-now timedelta 526 days,
20:30:29

741 days,
18:39:22

> 0

PlatformName string length 4 length 13 0 6 values 1

WebsiteID string length 4 length 4 0 1

Website string length 3 length 24 0 1

Category string length 5 length 5 0 2 values 1

UserCountryID string length 2 length 2 0 1

UserLang string length 2 length 2 0 1

RedirectFromCode string length 3 length 3 0 1

RedirectFromCountryCode string length 2 length 2 0 1

Individual Field Constraints

Name Type Min Max Sign Max
Nulls

Dups Values # regex

RedirectToCountryCode string length 2 length 2 0 1

NumberOfAdults int 1 8 > 0

NumberOfChildren int 0 5 ≥ 0

NumberOfInfants int 0 2 ≥ 0

AirlineID string length 2 length 2 0 1

CabinClass string length 5 length 15 0 4 values 2

PriceCurrency string length 3 length 3 0 1

TicketPrice_GBP real 6.62 18,397.88 > 0 0

CardPrice_GBP real -119,140.79 587,862.19

TotalPrice_GBP real 0.00 14,193,537.43 ≥ 0 0

Card string length 3 length 48 0 8

AUTO-GENERATED CONSTRAINTS

Individual Field Constraints

Name Type Min Max Sign Max
Nulls

Dups Values # regex

RedirectToCountryCode string length 2 length 2 0 1

NumberOfAdults int 1 8 > 0

NumberOfChildren int 0 5 ≥ 0

NumberOfInfants int 0 2 ≥ 0

AirlineID string length 2 length 2 0 1

CabinClass string length 5 length 15 0 4 values 2

PriceCurrency string length 3 length 3 0 1

TicketPrice_GBP real 6.62 18,397.88 > 0 0

CardPrice_GBP real -119,140.79 587,862.19

TotalPrice_GBP real 0.00 14,193,537.43 ≥ 0 0

Card string length 3 length 48 0 8

AUTO-GENERATED CONSTRAINTS

ABSENT CONSTRAINTS

Gregory (Scotland Yard detective): “Is there any other point
to which you would wish to draw my attention?”
Holmes: “To the curious incident of the dog in the night-time.”
Gregory: “The dog did nothing in the night-time.”
Holmes: “That was the curious incident.”

— Silver Blaze, in Memoirs of Sherlock Holmes
Arthur Conan Doyle, 1892.

 "fields": {
 "RequestId": {
 "type": "string",
 "min_length": 36,
 "max_length": 36,
 "max_nulls": 0,
 "rex": [
 "^([0-9a-f]{8})\\-([0-9a-f]{4})\\-11e5\\-([0-9a-f]{4})\\-([0-9a-f]{12})$"
]
 },
 "PageRequestDate": {
 "type": "date",
 "min": "2015/06/20 01:42:23",
 "max": "2016/01/20 23:51:16",
 "max_nulls": 0
 },

EXTRACT FROM TDDA FILE

VERIFICATION 1

Name Failures
Type Minimum Maximum

Allowed Actual ✓Allowed Actual ✓ Allowed Actual ✓

PageRequestDate 2 date date ✓ 2015/06/20
01:42:23

2015/06/19
23:05:05

✗
2016/01/20
23:51:16

2016/01/20
23:57:13

✗

TicketPrice_GBP 2 real real ✓ 6.62 0.01 ✗ 18,397.88 72,082.60 ✗

CardPrice_GBP 2 real real ✓ -119,140.79 -4,900,329.70 ✗ 587,862.19 877,213.03 ✗

PageRequestDate:time-
before-now 1 - - - 526 days,

19:52:36
527 days,
12:31:26 ✓ 741 days,

18:01:29
742 days,
13:23:34 ✗

NumberOfChildren 1 int int ✓ 0 0 ✓ 5 8 ✗

NumberOfInfants 1 int int ✓ 0 0 ✓ 2 3 ✗

TotalPrice_GBP 1 real real ✓ 0.00 0.00 ✓ 14,193,537.43 20,242,428.57✗

Card 1 string string ✓ length 3 length 3 ✓ length 48 length 48 ✓

VERIFICATION 2

Name
Sign Max Nulls Duplicates

Allowed Actual ✓ Allowed Actual ✓ Allowed Actual ✓

PageRequestDate - - - 0 0 ✓ - - -

TicketPrice_GBP > 0 ✓ ✓ 0 0 ✓ - - -

CardPrice_GBP - - - - 38646 - - - -

PageRequestDate:time-
before-now

> 0 ✓ ✓ - 0 - - - -

NumberOfChildren ≥ 0 ✓ ✓ - 68 - - - -

NumberOfInfants ≥ 0 ✓ ✓ - 68 - - - -

TotalPrice_GBP ≥ 0 ✓ ✓ 0 0 ✓ - - -

Card - - - 0 0 ✓ - - -

VERIFICATION 3

Name
Values Rex

Allowed Actual ✓ Allowed Actual ✓

PageRequestDate - - - - - -

TicketPrice_GBP - - - - - -

CardPrice_GBP - - - - - -

PageRequestDate:time-
before-now

- - - - - -

NumberOfChildren - - - - - -

NumberOfInfants - - - - - -

TotalPrice_GBP - - - - - -

Card - - - 8 patterns
e.g. "BANK OF
BAHRAIN AND
KUWAIT NET

✗

INTERMEDIATES & OUTPUTS TOO
INPUT-1 INPUT-2

MEASURES

COMBINED

MODEL-INPUT

MODEL-OUTPUT

MEASURE

JOIN

ENHANCE

PREDICT

input1
.tdda

input2
.tdda

measures
.tdda

combined
.tdda

model-input
.tdda

model-output
.tdda

Rexpy
Regular Expressions by Example

Some people, when confronted
with a problem, think

“I know, I’ll use regular expressions.”

Now they have two problems

— Jamie Zawinski
 comp.emacs.xemacs, 1997

REGULAR EXPRESSIONS

212–988–0321
476 123 8829

1 701 734 9288
 (617) 222 0529

^1?[\(]?\d{3}\)?[\–]\d{3}[\–]\d{4}$
digits

(3)
digits

(3)
digits

(4)
start

of
line

/string

end
of

line
/string

space
or

hyphen

space
or

hyphen

optional
space

or open
bracket

optional
close

bracket

optional
1

MN 55402
OH 45202-7735

^[A–Z]{2} \d{5}(\–\d{4})?$

unescaped parentheses
(no backslash) “tag”

sub-expressions

optional

REGULAR EXPRESSIONS

Powerful

Hard to write

Harder to read

Hard to quote/escape†

Harder still to debug

Ugly

† r'...' is your friend

PROS CONS

Why not let
the computer do

the work?

demonstration
(rexpy)

Rexpy
is our early attempt to let the computer

find useful regular expressions
from examples

included in tdda library
(but not yet used to generate/check constraints)

and also available online at rexpy.herokuapp.com

TDDA
FUTURES

TDDA CURRENT
Item Difficulty Used ad hoc In Miró In tdda lib
Reference tests medium ✔ ✔ ✔

Type constraints easy ✔ ✔ ✔

Min/Max constraints (inc. lengths) easy ✔ ✔ ✔

Sign constraints easy ✔ ✔ ✔

Nulls constraints easy ✔ ✔ ✔

Duplicates constraints easy ✔ ✔ ✔

Categorical values constraints medium ✔ ✔ ✔

Regular expression generation
(rexpy)

hard ✔ ✔ ✔

Regular expression constraints easy ✔ ✔ real soon . . .
Time delta (relative time) constraints medium ✔ ✔ planned
Compare pairs of date fields easy ✔ ✔ planned
Foreign key constraints medium ✔ ½ planned

TDDA FUTURES 1
• Combining/updating constraints sets

★Narrowing and broadening

• Conditional constraints

★ e.g. only for data after 2017-07-01; only for Berlin data

• Incident characterization/Root cause analysis

• Reporting of many kinds, inc. grouping failing values

★ Visualization

• More field generation e.g. virtual fields from regex groups

• Encapsulate identities/checks with columns

• JSON and JSON schemas

TDDA FUTURES 2
• Distribution shifts

• “Nearly” constraints

• Rexpy improvements

• Constraints editor

• Constraint severity levels

• Alerting

• Human feedback (inc. errors!)

• Different kinds of data feeds

REMEMBER YOUR ABC

Always
Be
Checking

@tdda0

https://github.com/tdda

Correct interpretation: Zero
Error of interpretation: Letter “Oh”

@njr0

njr@StochasticSolutions.com

#tdda* *tweet (DM) us email
 address for invitation
 Or email me.

http://tdda.info

www.tdda.info/pdf/tdda-pydata-berlin-2017.pdf

